Characterization of antioxidant olive oil biophenols by spectroscopic methods

Fátima Paiva-Martins,a Vera Rodrigues,a,b,c Rita Calheirosc and Maria PM Marquesc∗

Abstract

BACKGROUND: Olive oil contains numerous phenolic components with well-recognized health-beneficial activity. The major phenolic compounds present in olives and virgin olive oil – hydroxytyrosol, oleuropein and the oleuropein aglycones 3,4-DHPEA-EA and 3,4-DHPEA-EDA – as well as some of their metabolites were studied in the present work, regarding their main structural preferences. Vibrational spectroscopy (Raman) coupled to theoretical methods were used, aiming at fully characterizing the systems and therefore enabling their quick and reliable identification in food samples.

RESULTS: The Raman data, assisted by the theoretical simulations, allowed us to obtain the main geometrical and spectroscopic features of the olive oil constituents under study, which determine their known antioxidant and chemoprotective properties. In fact, it was verified that the spectra comprise distinctive bands for each compound, allowing their ready detection and differentiation.

CONCLUSION: This is the first reported study on the structural behaviour of olive oil phenolic compounds, and it established Raman spectroscopy as a rapid, non-destructive and reliable analytical technique for identifying these bioactive components in dietary extracts. It can surpass other analytical methods currently used, once it allows the concomitant identification of several olive oil components in a particular sample.

Keywords: olive oil; hydroxytyrosol; oleuropein; phenolic compounds; Raman spectroscopy; theoretical calculations

INTRODUCTION

Olive oil contains biophenolic components which were found to exert numerous beneficial biological effects, both in vitro and in vivo,1–4 including the prevention of severe pathologies such as cardiovascular distress and cancer,1,3 due to their high antioxidant capacity.2 These polyphenolic compounds comprise hydroxytyrosol (3,4-di-hydroxyphenylethanol, 3,4-DHPEA or HT) and its secoiridoid derivatives, namely oleuropein (OP) and the oleuropein aglycones 3,4-DHPEA-EA (elenolic acid linked to hydroxytyrosol) and 3,4-DHPEA-EDA (dialdehydic form of elenolic acid linked to hydroxytyrosol) (Figs 1 and 2).

The discovery of antioxidant activities (in vitro, ex vivo and in animal models) for the most important olive oil phenolic derivatives has stimulated intensive research on their presence in olive oils and on their bioavailability, metabolism and disposition in humans. The basis for these studies is that the debate on the potential benefits of olive oil phenolic compounds for human health require the support of clinical studies on their bioavailability. Initial investigations, performed both in animals and in humans,5 have shown that olive oil biophenols are mainly absorbed from the intestinal tract. Hydroxytyrosol rises early after ingestion, reaching a peak after ca. 1 h in plasma6 and up to 2 h in urine.7 Vissers and his collaborators have suggested that an important step in the metabolism of the olive oil phenolics oleuropein–glycoside and oleuropein–aglycones is their conversion into hydroxytyrosol.8 Following reports on HT metabolic disposition in humans,6–8 it was verified that two of the main competing pathways are O-glucuronide conjugation by uridine-5′-diphosphoglucuronyl transferases (UDPGTs), and O-methylation by catecholmethyltransferase (COMT), leading to the formation of homovanillyl alcohol (HVA). Furthermore, homovanillic acid and homovanillyl alcohol have been measured in human and animal studies, both in plasma and in urine, after olive oil ingestion.6–8 Therefore, the potential health benefits of olive oil phenolic derivatives may also be attributed to their conjugated metabolites or to the products of their enzymatic hydrolysis at the cellular level, which display a free phenolic moiety.

Despite the well-recognized activity of OVPs, very few studies are to be found in the literature on the effect of each particular phenolic component, and even fewer on the relationship between their activity and their structural characteristics and con-
formational behaviour. Recent in vitro studies\textsuperscript{9–11} have shown a significant protection towards the HL-60 cell line, erythrocytes and mononuclear blood cells by 3,4-DHPEA-EDA. This hydroxytyrosol ester has shown the best activity in these biological systems when compared to either hydroxytyrosol or oleuropein and the oleuropein aglycone 3,4-DHPEA-EA. These three secoiridoid molecules display a common 3,4-dihydroxyphenylethanol moiety, mainly responsible for their antiradical properties as well as for their ability to interact with both membranes and proteins,\textsuperscript{10} which seems to be mediated also by the elenolic acid group. Therefore, understanding the effect and mode of action of this kind of antioxidant molecules relies on the corresponding structure–activity relationships, which require a detailed characterization of the systems at the molecular level. It is therefore of the utmost importance to determine the conformational preferences of this kind of systems, both in the condensed phase and in solution, and to develop techniques which will allow a quick and reliable identification of each particular olive oil component in a biological sample (either a dietary extract or olive oil itself).

Raman spectroscopy has proven to be a highly reliable method for the determination of the composition profile of a sample, either solid or in solution (including aqueous solutions),\textsuperscript{12–16} owing to its non-invasiveness, high sensitivity and good reproducibility, coupled with the fact that it needs virtually no sample preparation. In fact, this technique yields unique fingerprint spectra, specific for each molecule, and can therefore be applied to both pure compounds and mixtures.

The present work reports a structural analysis of the main olive oil polyphenolic constituents hydroxytyrosol (2-(3,4-dihydroxyphenyl)ethanol, HT) and its metabolites homovanillyl alcohol (2-(4-hydroxy-3-methoxyphenyl)ethanol, MOPET), homovanillic acid (4-hydroxy-3-methoxyphenylethanoic acid, HVA) and 3,4-dihydroxyphenylalanic acid (DOPAC) (Fig. 1), as well as of the secoiridoid derivatives oleuropein (OP) and the oleuropein aglycones 3,4-DHPEA-EA and 3,4-DHPEA-EDA (Fig. 2). The main conformational preferences of these systems were obtained by coupling Raman spectroscopic data to the results yielded by theoretical methods (at the quantum mechanical level).

**EXPERIMENTAL**

**Phenolic compounds**

Hydroxytyrosol was synthesized from 3,4-dihydroxyphenylacetic acid (Sigma-Aldrich Quimica-SA, Madrid, Spain) according to the procedure of Baraldi et al.\textsuperscript{17} Oleuropein was extracted from olive leaves following the method of Gariboldi et al.\textsuperscript{18} The aglycone 3,4-DHPEA-EA was

---

**Figure 1.** Schematic representation of the most stable structures calculated for hydroxytyrosol (HT) and its metabolites MOPET, HVA and DOPAC.

**Figure 2.** Schematic representation of the most stable geometries calculated for the olive oil secoiridoids OP, 3,4-DHPEA-EA and 3,4-DHPEA-EDA. (For clarity, most hydrogen atoms are not shown).
obtained from oleuropein by enzymatic reaction using β-
glycosidase (Fluka, Buchs, Switzerland), according to the method
reported by Limirioli et al.\textsuperscript{19} 3,4-DHPEA-EDA was extracted from
olive leaves, following the process of Paiva-Martins and Gordon.\textsuperscript{20}

Theoretical calculations

Theoretical (quantum mechanical) calculations were performed in
order to obtain a reliable structural model of the polyphenolic
systems studied and simulate the corresponding vibrational
spectra. The Gaussian 03 W program\textsuperscript{21} was used, within the
Density Functional Theory (DFT) approach, which accounts for
the electron correlation effects that are particularly important in
this kind of conjugated systems. The hybrid method denoted by
B3LYP, including a mixture of HF and DFT exchange terms and
the gradient-corrected correlation functional of Lee et al.,\textsuperscript{22,23} as
proposed and parametrized by Becke,\textsuperscript{24,25} was applied, along with
the double-zeta split valence basis set 6-31G\textsuperscript{**},26,27

Molecular geometries were fully optimized by the Berny
algorithm, using redundant internal coordinates\textsuperscript{28} the bond
lengths to within ca. 0.1 pm and the bond angles to within
c.a. 0.1'. The final root mean square (rms) gradients were
always less than 3 × 10\textsuperscript{−4} hartree bohr\textsuperscript{−1} or hartree radian\textsuperscript{−1}.
No geometrical constraints were imposed on the molecules
under study. The relative energies and populations (Boltzmann
distribution at 298.15 K) were calculated for all conformers, using
the sum of the electronic and zero-point energies.

Calculation of the harmonic vibrational frequencies was carried
out for all geometries, in order to check for minima in the potential
energy surface and to obtain the theoretical vibrational pattern
(b both Raman and infrared) of the compounds. Wavenumbers
above 400 cm\textsuperscript{−1} were scaled by a factor of 0.9614,\textsuperscript{29} before
comparing them with the experimental data, in order to correct
for the anharmonicity of the normal modes of vibration.

Raman spectroscopy

The Raman spectra were obtained at room temperature, in a
triple-monochromator Jobin Yvon T64000 Raman system (Paris,
France) (focal distance 0.640 m, aperture f/7.5) with holographic
gratings of 1800 grooves mm\textsuperscript{−1}. The premonochromator stage
was used in the subtractive mode. The detection system was
a liquid-nitrogen-cooled non-intensified 1024

×

256 pixel (1"

Charge Coupled Device (CCD). The entrance slit was set to 200 μm,
and the slit between the premonochromator and the spectrograph
was opened to 12 mm.

The excitation radiation was provided (ca. 100 mW at the sample
position) by the 514.5 nm line of an Ar\textsuperscript{+} laser (model Innova 300,
Coherent Inc., Santa Clara, CA, USA). A 90° geometry between
the incident radiation and the collecting system was employed.
Samples were sealed in Kimax glass capillary tubes of 0.8 mm
inner diameter. Under the above-mentioned conditions, the error
in wavenumbers was estimated to be within 1 cm\textsuperscript{−1}.

Raman spectra were collected for both the solid samples and
for solutions (in both water and dimethyl sulfoxide).

RESULTS AND DISCUSSION

Figures 1 and 2 represent the most stable structures calculated
for the olive oil polyphenolic components presently investigated.
Hydroxytyrosol and its metabolites (MOPET, HVA and DOPAC)
(Fig. 1) display ring substituents – either OH or OCH\textsubscript{3}–coplanar
with the aromatic ring (establishing (O)H···O intramolecular
interactions, d\textsubscript{O···O} ca. 2.1 Å), while the saturated pendant arm
containing the hydroxyl (in the HT and MOPET alcohols) or
ca. 0.1°. The final root mean square (rms) gradients were
always less than 3 × 10\textsuperscript{−4} hartree bohr\textsuperscript{−1} or hartree radian\textsuperscript{−1}.
No geometrical constraints were imposed on the molecules
under study. The relative energies and populations (Boltzmann
distribution at 298.15 K) were calculated for all conformers, using
the sum of the electronic and zero-point energies.

Calculation of the harmonic vibrational frequencies was carried
out for all geometries, in order to check for minima in the potential
energy surface and to obtain the theoretical vibrational pattern
(b both Raman and infrared) of the compounds. Wavenumbers
above 400 cm\textsuperscript{−1} were scaled by a factor of 0.9614,\textsuperscript{29} before
comparing them with the experimental data, in order to correct
for the anharmonicity of the normal modes of vibration.

Raman spectroscopy

The Raman spectra were obtained at room temperature, in a
triple-monochromator Jobin Yvon T64000 Raman system (Paris,
France) (focal distance 0.640 m, aperture f/7.5) with holographic
gratings of 1800 grooves mm\textsuperscript{−1}. The premonochromator stage
was used in the subtractive mode. The detection system was
a liquid-nitrogen-cooled non-intensified 1024

×

256 pixel (1"

Charge Coupled Device (CCD). The entrance slit was set to 200 μm,
and the slit between the premonochromator and the spectrograph
was opened to 12 mm.

The excitation radiation was provided (ca. 100 mW at the sample
position) by the 514.5 nm line of an Ar\textsuperscript{+} laser (model Innova 300,
Coherent Inc., Santa Clara, CA, USA). A 90° geometry between
the incident radiation and the collecting system was employed.
Samples were sealed in Kimax glass capillary tubes of 0.8 mm
inner diameter. Under the above-mentioned conditions, the error
in wavenumbers was estimated to be within 1 cm\textsuperscript{−1}.

Raman spectra were collected for both the solid samples and
for solutions (in both water and dimethyl sulfoxide).

RESULTS AND DISCUSSION

Figures 1 and 2 represent the most stable structures calculated
for the olive oil polyphenolic components presently investigated.
Hydroxytyrosol and its metabolites (MOPET, HVA and DOPAC)
(Fig. 1) display ring substituents – either OH or OCH\textsubscript{3}–coplanar
with the aromatic ring (establishing (O)H···O intramolecular
interactions, d\textsubscript{O···O} ca. 2.1 Å), while the saturated pendant arm
containing the hydroxyl (in the HT and MOPET alcohols) or
ca. 0.1°. The final root mean square (rms) gradients were
always less than 3 × 10\textsuperscript{−4} hartree bohr\textsuperscript{−1} or hartree radian\textsuperscript{−1}.
No geometrical constraints were imposed on the molecules
under study. The relative energies and populations (Boltzmann
distribution at 298.15 K) were calculated for all conformers, using
the sum of the electronic and zero-point energies.

Calculation of the harmonic vibrational frequencies was carried
out for all geometries, in order to check for minima in the potential
energy surface and to obtain the theoretical vibrational pattern
(b both Raman and infrared) of the compounds. Wavenumbers
above 400 cm\textsuperscript{−1} were scaled by a factor of 0.9614,\textsuperscript{29} before
comparing them with the experimental data, in order to correct
for the anharmonicity of the normal modes of vibration.

Raman spectroscopy

The Raman spectra were obtained at room temperature, in a
triple-monochromator Jobin Yvon T64000 Raman system (Paris,
France) (focal distance 0.640 m, aperture f/7.5) with holographic
gratings of 1800 grooves mm\textsuperscript{−1}. The premonochromator stage
was used in the subtractive mode. The detection system was
a liquid-nitrogen-cooled non-intensified 1024

×

256 pixel (1"

Charge Coupled Device (CCD). The entrance slit was set to 200 μm,
and the slit between the premonochromator and the spectrograph
was opened to 12 mm.

The excitation radiation was provided (ca. 100 mW at the sample
position) by the 514.5 nm line of an Ar\textsuperscript{+} laser (model Innova 300,
Table 1. Relative conformational energies, relative populations and total dipole moments (µ, in Debyes) for the most stable geometries calculated for HT, MOPET, HVA and DOPAC

<table>
<thead>
<tr>
<th>Conformer</th>
<th>ΔE (kJ mol⁻¹)</th>
<th>Population (%)</th>
<th>µ (D)</th>
</tr>
</thead>
<tbody>
<tr>
<td>HT1</td>
<td>0</td>
<td>80.4</td>
<td>3.0</td>
</tr>
<tr>
<td>HT2</td>
<td>3.5</td>
<td>19.6</td>
<td>3.6</td>
</tr>
<tr>
<td>MOPET1</td>
<td>0.0</td>
<td>99</td>
<td>1.5</td>
</tr>
<tr>
<td>MOPET2</td>
<td>11.4</td>
<td>1</td>
<td>3.9</td>
</tr>
<tr>
<td>MOPET3</td>
<td>23.7</td>
<td>0</td>
<td>3.6</td>
</tr>
<tr>
<td>MOPET4</td>
<td>25.1</td>
<td>0</td>
<td>2.0</td>
</tr>
<tr>
<td>HVA1</td>
<td>0</td>
<td>100</td>
<td>1.4</td>
</tr>
<tr>
<td>HVA2</td>
<td>26.7</td>
<td>0</td>
<td>3.4</td>
</tr>
<tr>
<td>HVA3</td>
<td>40.2</td>
<td>0</td>
<td>6.4</td>
</tr>
<tr>
<td>DOPAC1</td>
<td>0</td>
<td>76.2</td>
<td>3.5</td>
</tr>
<tr>
<td>DOPAC2</td>
<td>2.9</td>
<td>23.7</td>
<td>1.8</td>
</tr>
<tr>
<td>DOPAC3</td>
<td>17.2</td>
<td>0.1</td>
<td>2.1</td>
</tr>
</tbody>
</table>

Some common Raman signals are observed for all the compounds studied, namely the main νC=C ring modes around 1670, 1620 and 780 cm⁻¹, and two distinct phenolic OH stretching bands at ca. 3650 cm⁻¹ and ca. 3065 cm⁻¹, the latter being ascribed to the hydroxyl group involved in intramolecular H-bonds (responsible for the large shift to low frequencies). For hydroxytyrosol and its metabolites, the signal around 780 cm⁻¹ also contains a contribution from the ring OH bending (Table 2). For systems containing carboxylate moieties, typical OH and C=O stretching features are clearly detected at about 3550 cm⁻¹ and 1650–1700 cm⁻¹, respectively.

The Raman technique yields a spectral fingerprint for each of the olive oil constituents presently analysed (Tables 2 and 3). In fact, while HVA and MOPET yield distinct vibrational modes for the methoxyl group, at 1000 and 225 cm⁻¹, corresponding to the C–O(CH₃) stretching and methyl torsion, respectively, only for HVA and DOPAC is the C=O stretching detected, at ca. 1650 cm⁻¹ (Fig. 4). Moreover, the alcohol group in HT and MOPET gives rise to a characteristic νOH mode at ca. 3700–3650 cm⁻¹.

The major vibrational features characteristic of each molecule investigated were also detected in the aqueous solution spectra (Figs 5 and 6). Furthermore, a reasonably good accordance was verified between the experimental and the simulated data (Figs 4 and 5), which allows an accurate assignment of the experimental vibrational features by comparison with the simulated Raman pattern. Therefore, coupling the theoretical results to the spectroscopic data presently obtained for these polyphenolic systems leads to a thorough elucidation of their detailed geometrical preferences, which are directly related to their antioxidant properties and overall biological activity (e.g.,

Figure 4. Experimental Raman spectra (100–1750 cm⁻¹) for hydroxytyrosol (HT) and its metabolites MOPET, HVA and DOPAC. (The dotted line represents the calculated spectrum for HT).
Spectroscopic characterization of olive oil biophenols

**Table 2.** Experimental Raman wavenumbers (cm\(^{-1}\)) and tentative assignments for the main bands of HT, MOPET, HVA and DOPAC

<table>
<thead>
<tr>
<th></th>
<th>HT</th>
<th>MOPET</th>
<th>HVA</th>
<th>DOPAC</th>
<th>Tentative assignment</th>
</tr>
</thead>
<tbody>
<tr>
<td>3700</td>
<td>3650</td>
<td></td>
<td></td>
<td></td>
<td>(\nu(\text{OH})_{\text{alcohol}})</td>
</tr>
<tr>
<td>3500</td>
<td>3551</td>
<td>3503</td>
<td>3551</td>
<td></td>
<td>(\nu(\text{OH})_{\text{ring}})</td>
</tr>
<tr>
<td>3100</td>
<td>3071</td>
<td>3064</td>
<td>3069</td>
<td></td>
<td>(\nu(\text{OH})_{\text{ring}}) (H-bonded)</td>
</tr>
<tr>
<td>1613</td>
<td>1603</td>
<td>1613</td>
<td>1619</td>
<td></td>
<td>(\nu(C=O))</td>
</tr>
<tr>
<td>1329</td>
<td>1330</td>
<td>1362</td>
<td></td>
<td></td>
<td>(\delta(C-H))</td>
</tr>
<tr>
<td>980</td>
<td>1000</td>
<td></td>
<td></td>
<td></td>
<td>(\nu(C-O(CH_3)))</td>
</tr>
<tr>
<td>781</td>
<td>780</td>
<td>794</td>
<td>768</td>
<td></td>
<td>(\nu(C=O(CH_2)))</td>
</tr>
<tr>
<td>712</td>
<td>702</td>
<td>753</td>
<td>717</td>
<td></td>
<td>(\nu(C\equiv C) + \nu(\text{OCC}))</td>
</tr>
<tr>
<td>363</td>
<td>374</td>
<td>381</td>
<td>368</td>
<td></td>
<td>(\nu(C\equiv C) + \nu(\text{OCC}))</td>
</tr>
<tr>
<td></td>
<td>225</td>
<td>220</td>
<td></td>
<td></td>
<td>(\tau(CH_3))</td>
</tr>
</tbody>
</table>

**Table 3.** Experimental Raman wavenumbers (cm\(^{-1}\)) and tentative assignments for the main bands of OP, 3,4-DHPEA-EA and 3,4-DHPEA-EDA

<table>
<thead>
<tr>
<th></th>
<th>OP</th>
<th>3,4-DHPEA-EA</th>
<th>3,4-DHPEA-EDA</th>
<th>Tentative assignment</th>
</tr>
</thead>
<tbody>
<tr>
<td>3567</td>
<td>3550</td>
<td>3524</td>
<td></td>
<td>(\nu(\text{OH})_{\text{ring}})</td>
</tr>
<tr>
<td>2983</td>
<td>2986</td>
<td>2944</td>
<td></td>
<td>(\nu(CH))</td>
</tr>
<tr>
<td>2940</td>
<td>2954</td>
<td>2924</td>
<td></td>
<td>(\nu(CH))</td>
</tr>
<tr>
<td>1734</td>
<td>1765</td>
<td>1716</td>
<td></td>
<td>(\nu(C\equiv O))</td>
</tr>
<tr>
<td>1712</td>
<td>1720</td>
<td>1704</td>
<td></td>
<td>(\nu(C\equiv O))</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1690 (\nu(C\equiv O))</td>
</tr>
<tr>
<td>1683</td>
<td>1675</td>
<td>1671</td>
<td></td>
<td>(\nu(C\equiv C)_{\text{ring}})</td>
</tr>
<tr>
<td>765</td>
<td>780</td>
<td>778</td>
<td></td>
<td>(\nu(C\equiv C)_{\text{ring}})</td>
</tr>
<tr>
<td>719</td>
<td>712</td>
<td>(\Gamma(\text{CCC}) + \Gamma(\text{OCC}))</td>
<td></td>
<td></td>
</tr>
<tr>
<td>250</td>
<td>250</td>
<td>245</td>
<td></td>
<td>(\tau(CH_3))</td>
</tr>
<tr>
<td></td>
<td></td>
<td>220</td>
<td></td>
<td>(\tau(CH_3))</td>
</tr>
</tbody>
</table>

**CONCLUSIONS**

Raman spectroscopy combined with DFT calculations were applied to the characterization and analysis of the main conformational preferences of the olive oil constituents hydroxytyrosol and its metabolites, as well as of the secoiridoids OP, 3,4-DHPEA-EDA and 3,4-DHPEA-EA. With regard to the recognized structural dependence of the biological activity of these phenolic derivatives, namely as chemopreventive agents against oxidative-induced processes (e.g., neurodegenerative disorders and carcinogenesis), the information yielded by this type of study will help to understand the mechanisms through which phenols act in living systems, and hopefully establish structure–activity relationships governing this cytoprotective role. This type of spectroscopic analysis of polyphenolic systems greatly benefits from the use of theoretical simulations (e.g., by quantum mechanical methods), which yield additional data supporting an accurate assignment of the experimental spectra, leading to reliable structural models of the systems.

The present work, which is the first reported study on the structural behaviour of olive oil biophenols, established Raman spectroscopy as a promising tool for the identification of such compounds, since it has proved to enable rapid and non-destructive measurements in very small amounts of sample (either pure or in solution) leading to the detection of spectral features characteristic of each particular compound. In fact, even chemically similar phenolic molecules could be easily distinguished by this technique. Therefore, the method has the additional advantage of enabling its extension to the metabolites of a certain compound (e.g., detection of hydroxytyrosol and its main metabolites). It can
also surpass other analytical methods currently used, once it allows the concomitant identification of several olive oil components in a particular olive oil sample.

ACKNOWLEDGEMENTS

The authors acknowledge financial support from the Portuguese Foundation for Science and Technology (PhD fellowship SFRH/BD/16520/2004).

REFERENCES